Show Mobile Navigation

Interesting Articles


Characteristics of Separately Excited DC Generators

In a separately excited dc generator the field coils are energised from an independent source. 

The disadvantage of a separately excited d.c. generator is same that we require an external d.c. source for excitation. 

But since the output voltage may be controlled more easily and over a wide range (from zero to a maximum), this type of excitation finds many applications.

Open circuit characteristic

The O.C.C. of a separately excited generator is determined in a manner described in previous section. It shows the variation of generated e.m f. on no load with field current for various fixed speeds. Note that if the value of constant speed is increased, the steepness of the curve also increases. When the field current is zero, the residual magnetism in the poles will give rise to the small initial e.m.f. as shown.

Internal and External Characteristics

The external characteristic of a separately excited generator is the curve between the terminal voltage (V) and the load current IL (which is the same as armature current in this case). In order to determine the external characteristic, the circuit set up is as shown in Fig (i). As the load current increases, the terminal voltage falls due to two reasons:
  • (a) The armature reaction weakens the main flux so that actual e.m.f. generated E on
    load is less than that generated (E0) on no load.
  • (b) There is voltage drop across armature resistance (= ILRa = IaRa).
Due to these reasons, the external characteristic is a drooping curve [curve 3 in Fig (ii)]. Note that in the absence of armature reaction and armature drop, the generated e.m.f. would have been E0 (Curve 1).

The internal characteristic can be determined from external characteristic by adding ILRa drop to the external characteristic. It is because armature reaction drop is included in the external characteristic. Curve 2 is the internal characteristic of the generator and should obviously lie above the external characteristic.


The separately excited dc generators has a decided advantage over the self excited generators - it operates in a stable condition with any field excitation. Thus a wide range of output voltage may be obtained. The main disadvantage of a separately excited generator lies in the inconvenience and expense of providing the separate excitation source. For this reason, the use of this type of generator is limited to experimental and testing laboratories where such a source is available and a wide variation of output voltage is desirable.